
University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Python Programming

Functions

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Outline

• Introduction

• Syntax	and	Basics	of	a	Function	

• Use	of	a	function

• Parameters	and	Arguments

• Local	and	Global	Scope	of	a	Variable

• Return	statement	

• Recursive	Functions

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Introduction

• Functions are common to all programming languages.
• A function is a block of related statements that performs a specific task

when called.
• Built-in functions are usually a part of Python packages and libraries,

whereas user-defined functions are written by the developers to meet
certain requirements.

• In Python, all functions are treated as objects, so it is more flexible
compared to other high-level languages.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Syntax	and	Basics	of	a	Function	

• Syntax	of	Function

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Syntax	and	Basics	of	a	Function	

• Keyword def marks the start of function header.
• A function name to uniquely identify it.
• Function naming follows the same rules of writing identifiers in Python.
• Parameters (arguments) through which we pass values to a function.

They are optional.
• A colon (:) to mark the end of function header.
• One or more valid python statements that make up the function body.

Statements must have same indentation level (usually 4 spaces).

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Syntax	and	Basics	of	a	Function	

def	user():
print("Python	Programming")
print("This	is	user	defined	function")

user();

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Use	of	a	function

• Suppose that you need to find the sum of integers from 1 to 10, 20 to 40 ,
and 50 to 100. If you create a program to add these three sets of numbers,
your code might look like this:
sum = 0
for i in range(1, 11):
sum = sum+i

print("Sum from 1 to 10 is", sum)
sum=0
for i in range(20,41):
sum = sum+i

print("Sum from 20 to 40 is", sum)
sum = 0
for i in range(50, 101):
sum = sum+i

print("Sum from 50 to 100 is", sum)

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Use	of	a	function

#	Using	Function
def	sum(x,y):
s=0
for	i in	range(x,y+1):
s=s+i

print("Sum	of	values	from",x,'to',y,'is',s)
sum(1,10)
sum(20,40)
sum(50,100)
#	End	of	Program

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Use	of	a	function

• Functions are reusable code blocks, they only need to be written once,
then they can be used multiple times. They can even be used in other
applications, too.

• The code is usually well organized, easy to maintain and developer
friendly.

• It can support the modular design approach.
• A well-defined and thoughtfully written user-defined function can ease

the application development process.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Parameters	and	Arguments	in	a	Function

• A parameter is a variable defined by a method that receives a value when
the method is called.

• An argument is a value that is passed to a method when it is invoked.
Function Program
def add_numbers(x, y, z):

a = x + y
b = x + z
c = y + z
print(a, b, c)

add_numbers(1, 2, 3)

the	number 1 is	for	the x parameter,
2 is	for	the y parameter,	
3 is	for	the z parameter.
The	number	1,2	and	3	are	called	arguments.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Parameters	and	Arguments	in	a	Function

• Function	arguments	in	Python
• Positional	Arguments
• When you call a function, Python must match each argument in the

function call with a parameter in the function definition.
• The simplest way to do this is based on the order of the arguments

provided. Values matched up this way are called positional arguments.
• You can use as many positional arguments as you need in your functions.
• You can get unexpected results if you mix up the order of the arguments in

a function call when using positional arguments

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Parameters	and	Arguments	in	a	Function

#	Positional	Arguments
def		display(name,course,per):

print("Your	name	is:",name,"\nYou are	enrolled	for:",course,
"\nYour	percentage	is:",per)

display('abc','BE',81.79)
#	End	of	Program

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Parameters	and	Arguments	in	a	Function

• Function	arguments	in	Python
• Keyword	Arguments
• Keyword arguments are relevant for Python function calls.
• The keywords are mentioned during the function call along with their

corresponding values. These keywords are mapped with the function
arguments so the function can easily identify the corresponding values
even if the order is not maintained during the function call.

• All the keyword arguments passed must match one of the arguments
accepted by the function. You may change the order of appearance of the
keyword.

• Multiple values for same argument are not allowed in function call.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Parameters	and	Arguments	in	a	Function

#	Keyword	Arguments
def		display(name,course,per):

print("Your	name	is:",name,"\nYou are	enrolled	for:",course,
"\nYour	percentage	is:",per)

display(course='BE',per=81.79,name='abc')

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Parameters	and	Arguments	in	a	Function

• Parameter	with	default	values
• In function's parameters list you can specify a default value(s) for one

or more arguments.
• A default value can be written in the format "argument1 = value",

therefore you will have the option to declare or not declare a value for
those arguments.

• Any number of arguments in a function can have a default value.
• Once you have a default argument, all the arguments to its right must

also have default values. i.e. non-default arguments cannot follow
default arguments.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Parameters	and	Arguments	in	a	Function

• Parameter	with	default	values
#	Default	Arguments
def			display(name,course='ME',per='81.79'):

print("Your	name	is:",name,"\nYou are	enrolled	for:",course,
"\nYour	percentage	is:",per)

display(course='BE',name='abc')

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Local	and	Global	Scope	of	a	Variable

• There are two types of variables: global variables and local variables.
• A global variable can be reached anywhere in the code.
• A local variable can be reached only in the area in which they are

defined, which is called scope.
• Scope of a variable is the portion of a program where the variable is

recognized. Parameters and variables defined inside a function is not
visible from outside. Hence, they have a local scope.

• Lifetime of a variable is the period throughout which the variable exits
in the memory.

• The lifetime of variables inside a function is as long as the function
executes. They are destroyed once you return from the function. Hence,
a function does not remember the value of a variable from its previous
calls.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Local	and	Global	Scope	of	a	Variable

• Accessing a local variable outside the scope will cause an error.
• If a variable with same name is defined inside the scope of function as

well then it will print the value given inside the function only and not the
global value.

• Any variable which is changed or created inside of a function is local, if it
has not been declared as a global variable. To tell Python, that you want to
use the global variable, you have to use the keyword “global”.

• The keyword global is not needed for printing and accessing. It is only
required in a function if you want to do assignments / change them.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Local	and	Global	Scope	of	a	Variable

#Local	and	Global	Variable
def		display():

x	=	10					#Local	Variable
print("Value	inside	function:",x)

#Global	Variable
x	=	20
display()
print("Value	outside	function:",x)

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Local	and	Global	Scope	of	a	Variable

#Local	and	Global	Variable
x	=	20												#Global	Variable
def			display():

x	=	10						#Local	Variable
print("Value	inside	function:",x)

display()
print("Value	outside	function:",x)

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Local	and	Global	Scope	of	a	Variable

#Local	and	Global	Variable
#	Global	Statement
def		display():

global	x
x	=	10				
print("Value	inside	function:",x)

x=20
display()
print("Value	outside	function:",x)

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Return	statement	

• The return statement is used to return a value from the function.
• It is also used to exit a function and go back to the place from where it was

called.
• Syntax of return
• return expression_list
• If there is expression in the statement which gets evaluated and the value

is returned.
• If there is no expression in the statement or the return statement itself is

not present inside a function, then the function will return the None object.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Return	statement	

def		square(x):

y	=	x	**	2

return	y

result	=	square(5)

print(result)

def		square(x):

y	=	x	**	2

#	return	y

result	=	square(5)

print(result)

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Return	statement	

• Write a function to compute the discriminator that returns the output
depending on the discriminator.
• If	discriminator	>0:	Two	real	roots
• If	discriminator=0:	One	Real	root
• If	discriminator<0:	Two	Complex	roots

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Return	statement	

import			math
a=	eval(input("Enter	value	of	a=	"))
b=	eval(input("Enter	value	of	b=	"))
c=	eval(input("Enter	value	of	c=	"))
def			roots(a,b,c):

disc	=	b**2	- 4*a*c
if	disc	>=	0:
print("Value	of	a:",a,"Value of	b:",b,"Value of	c:",c)
print("Discriminant",disc)
return	("r1=",(-b	+	math.sqrt(disc))/(2*a),"r2=",(-b	- math.sqrt(disc))/(2*a))

else:
print("Value	of	a:",a,"Value of	b:",b,"Value of	c:",c)
print("Discriminant",disc)
return	('r1=',-b/(2*a),'+i',math.sqrt(disc*(-1))/(2*a),

'r2=',-b/(2*a),'-i',math.sqrt(disc*(-1))/(2*a))
print(roots(a,b,c))

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Return	statement	

• It is possible to return multiple values in python.
• It is also possible for a function to perform certain operations, return

multiple values and assign the returned multiple values to a multiple
variable.
Returning Multiple Values from a Function
def compute(num):

print("Number=",num)
return num*num,num*num*num

square,cube=compute(6)
print("Square=",square, ", ", "Cube=",cube)

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Return	statement	

#	Returning	Multiple	Values	from	a	Function
num=eval(input("Enter	the	number:"))
def		compute(n):

print("Number=",num)
return	num*num,num*num*num

square,cube=compute(num)
print("Square=",square,",	",	"Cube=",cube)

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Recursive	Functions

• Recursion is the process of defining something in terms of itself.
• A physical world example would be to place two parallel mirrors facing

each other. Any object in between them would be reflected recursively.
• A function can call other functions. It is even possible for the function to

call itself. These type of construct are termed as recursive functions.
• Every recursive function must have a base condition that stops the

recursion or else the function calls itself infinitely.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Recursive	Functions

• Advantages of Recursion
• Recursive functions make the code look clean and elegant.
• A complex task can be broken down into simpler sub-problems using

recursion.
• Sequence generation is easier with recursion than using some nested

iteration.
• Disadvantages of Recursion
• Sometimes the logic behind recursion is hard to follow through.
• Recursive calls are expensive (inefficient) as they take up a lot of

memory and time.
• Recursive functions are hard to debug.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Recursive	Functions

#	Factorial	of	a	number
num=int(input("Enter	the	number:"))
def		factorial(n):

if	n==0:
return	1

return	n*factorial(n-1)
print(factorial(num))

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Recursive	Functions

#Fibonacci	series	Program	using	Recursion
#	Recursive	Function	Beginning
def		fibo(num):

if(num==0):
return	0

elif(num==1):
return	1

else:
return(fibo(num-2)+fibo(num-1))

#	End	of	the	Function
#	Fibonacci	series	will	start	at	0	and	continue	up	to	specified	range
num=int(input("Enter	the	Range	for	fibonacci	series:"))
#	Find	&	Displaying	Fibonacci	series
for		i in	range(0,num):

print(fibo(i))

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Recursive	Functions

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Programs

• The built-in function eval takes a string and evaluates it using the Python
interpreter.

• Write a function called eval_loop that iteratively prompts the user, takes
the resulting input and evaluates it using eval, and prints the result.

• It should continue until the user enters 'done', and then return the value
of the last expression it evaluated.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Programs

def		eval_loop():
while		True:
n	=	input('Input	Expression::\n')
if		n	==	'done':
break

else:
result	=	eval(n)
print(result)

print(result)
eval_loop()

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Programs

• Write a function called ‘do_plus’ that accepts two parameters and adds
them together with the “ + ” operation.

a=int(input("Enter first number:"))
b=int(input("Enter second number:"))
def do_plus(x,y):

return x+y
print("Sum of the given two numbers is:",do_plus(a,b))

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Programs

• If you are given three sticks, you may or may not be able to arrange them
in a triangle. For any three lengths, there is a simple test to see if it is
possible to form a triangle:

• If any of the three lengths is greater than the sum of the other two, then
you cannot form a triangle. Otherwise, you can. (If the sum of two lengths
equals the third, they form what is called a “degenerate” triangle.)
• # Write a function name is_triangle that takes three integers as

arguments ,and that prints either “Yes” or “No” depending on whether
you can or cannot form a triangle from sticks with the given lengths.

• # Write a function that prompts the user to input three stick lengths,
converts them to integers and uses is_triangle to check whether sticks
with the given lengths can form a triangle.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Programs
#	Condition1
def	 is_triangle(x,	y,	z):

if	z	>	(x+y)	or	y	>	(x+z)	or	x	>	(y+z):
print('No')

else:
print('Yes')

is_triangle(1,	2,	3)	 #	it's	possible	to	arrange	a	triangle
is_triangle(1,	2,	9) #	it's	not	possible	to	arrange	a	triangle
print()
#	Condition2
def	 triangle():

x	=	int(input('Please	enter	the	length	of	the	1st	stick:\n'))
y	=	int(input('Please	enter	the	length	of	the	2nd	stick:\n'))
z	=	int(input('Please	enter	the	length	of	the	3rd	stick:\n'))
is_triangle(x,	y,	z)

triangle()

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Programs

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

Programs

• Python Program to Find LCM
• Python Program to Find Factorial of Number Using Recursion
• Python Program to Make a Simple Calculator
• The built-in function eval takes a string and evaluates it using the Python

interpreter.
– Write a function called eval_loop that iteratively prompts the user, takes the resulting

input and evaluates it using eval, and prints the result.
– It should continue until the user enters 'done', and then return the value of the last

expression it evaluated.

University Institute of Engineering (UIE)

Department of Computer Science and Engineering (CSE)Department of Computer Science and Engineering (CSE)

THANKS…..

